Abstract
The exit burr generated in the face milling operation at the edge of the workpiece usually requires deburring processes to enhance the level of precision of the parts. This paper is to geometrically understand the formation of the exit burr in the face milling operation on the arbitrary shaped workpiece with multiple feature such as hole, spline, and arc so that we can suggest the cutting conditions and tool path to minimize the burr formation on the given workpiece in the early design stage. The burr formation mechanism in each type of burr is classified based on the experimental results. A database is developed to store and predict burr formation results. A Windows based program is developed with the algorithm including three steps, i.e., the feature identification, the cutting condition identification, and the analysis on exit burr formation. We can predict which portion of the workpiece would have the exit burr in advance so that we can manage to find a way to minimize the exit burr formation in an actual cutting. Here, the idea of critical burr length is introduced as a criterion in optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.