Abstract

In this study, the magnesium oxide (MgO)-based adsorbents [granulated MgO aggregates (GA-MgO) and surface-modified MgO powder (SM-MgO)] were developed to remediate a fluoride-contaminated groundwater site. Both GA-MgO and SM-MgO had porous, spherical, and crystalline structures. Diameters for GA-MgO and SM-MgO were 1–1.7 mm and 1–10 μm, respectively. The pseudo second-order dynamic adsorption and the Freundlich isotherm could be applied to express the chemical adsorption phenomena. The monolayer adsorption was the dominant mechanism at the initial adsorption period. During the latter part of fluoride adsorption, the multilayer adsorption became the dominant mechanism for fluoride removal from the water phase, which also resulted in the increased adsorption capacity. Higher hydroxide, phosphate, and carbonate concentrations caused a decreased fluoride removal efficiency due to the competition of sorption sites between fluoride and other anions with similar electronic properties. Fluoride removal mechanism using GA-MgO and SM-MgO as the adsorbents was mainly carried out by the chemical adsorption. Reaction paths contained two main processes: (1) formation of magnesium hydroxide after the reaction of MgO with water, and (2) the hydroxyl group of the magnesium hydroxide was replaced by fluoride ions to form magnesium fluoride precipitation. Results from column tests show that up to 61 and 73% of fluoride removal (initial fluoride concentration = 9.3 mg/L) could be obtained after 50 pore volumes of groundwater pumping with GA-MgO and SM-MgO injection, respectively. The GA-MgO system could be applied to contain and remediate fluoride-contaminated groundwater, and SM-MgO could be applied as an immediate fluoride removal alternative to achieve a rapid pollutant removal for emergency responses. Up to 71% of fluoride removal (fluoride concentration = 10.8 mg/L) could be obtained with GA-MgO injection after 30 days of operation. The developed GA-MgO system is a potential and green remediation alternative to contain the fluoride plume significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call