Abstract
The use of recombinant allergens is a promising approach in allergen-specific immunotherapy (AIT). Considerable limitation, however, has been the ability of recombinant allergens to activate effector cells leading to allergic reactions. Recombinant hypoallergens with preserved protein folding and capacity to induce protective IgG antibodies binding effectively to the native allergen upon sensitization would be beneficial for safer AIT. In this study, hypoallergen variants of the major horse allergen Equ c 1 were designed by introducing one point mutation on the putative IgE epitope region and two mutations on the monomer-monomer interface of Equ c 1 dimer. The recombinant Equ c 1 wild type and the variants were produced and purified to homogeneity, characterized by size-exclusion ultra-high performance liquid chromatography and ultra-high resolution mass spectrometry. The IgE-binding profiles were analyzed by a competitive immunoassay and the biological activity by a histamine release assay using sera from horse allergic individuals. Two Equ c 1 variants, Triple 2 (V47K + V110E + F112K) and Triple 3 (E21Y + V110E + F112K) showed lower allergen-specific IgE-binding capacity and decreased capability to release histamine from basophils in vitro when using sera from six allergic individuals. Triple 3 showed higher reduction than Triple 2 in IgE-binding (5.5 fold) and in histamine release (15.7 fold) compared to wild type Equ c 1. Mutations designed on the putative IgE epitope region and monomer-monomer interface of Equ c 1 resulted in decreased dimerization, a lower IgE-binding capacity and a reduced triggering of an allergic response in vitro.
Highlights
Allergen-specific immunotherapy (AIT) is based on allergen extracts obtained from natural sources
We have proposed a sequential model for mast cell or basophil activation in which monomeric allergen binds first to the FcεRI bound IgE on the cell surface and subsequent dimerization is strongly boosted due to dimensional reduction on the cell surface leading to a signal transduction[9]
Mutations were designed both on the monomer-monomer interface and the putative IgE epitope of Equ c 1
Summary
Allergen-specific immunotherapy (AIT) is based on allergen extracts obtained from natural sources. Due to rather challenging techniques associated with isolation of allergen specific IgE antibodies and co-crystallization of protein complexes, only two such IgE/Fab-allergen complex structures have been determined so far; for bovine milk allergen Bos d 5 and for timothy grass pollen allergen Phl p 2. In both of the studies the overall spatial shape of the IgE epitope was flat consisting mainly of secondary structure elements (β-strands) differing from IgG epitopes which are typically located in the protruding regions of allergens[6,7]. We have proposed a sequential model for mast cell or basophil activation in which monomeric allergen binds first to the FcεRI bound IgE on the cell surface and subsequent dimerization is strongly boosted due to dimensional reduction (delocalization) on the cell surface leading to a signal transduction[9]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have