Abstract
Polyploid plants typically display advantages on some agronomically important traits over their diploid counterparts. Extensive studies have shown genetic, transcriptomic, and epigenetic dynamics upon polyploidization in multiple plant species. However, few studies have unveiled those alternations imposed only by ploidy level, without any interference from heterozygosity. Cultivated potato is highly heterozygous. Thus, in this study, we developed two homozygous autotetraploid lines and one homozygous diploid line in parallel from a homozygous diploid potato. We confirmed their ploidy levels using chloroplast counting and karyotyping. Oligo-FISH and genome re-sequencing validated that these potato lines are nearly homozygous. We investigated variations in phenotypes, transcription, and histone modifications between two ploidies. Both autotetraploid lines produced larger but fewer tubers than the diploid line. Interestingly, each autotetraploid line displayed ploidy-related differential expression for various genes. We also discovered a genome-wide enrichment of H3K27ac in genic regions upon whole-genome doubling (WGD). However, such enrichment was not associated with the differential gene expression between two ploidies. The tetraploid lines may exhibit better resistance to cold-induced sweetening (CIS) than the diploid line in tubers, potentially regulated through the expression of CIS-related key genes, which seems to be associated with the levels of H3K4me3 in cold-stored tubers. These findings will help to understand the impacts of autotetraploidization on dynamics of phenotypes, transcription, and histone modifications, as well as on CIS-related genes in response to cold storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.