Abstract

Cold-induced sweetening is one of the major factors limiting the quality of fried potato products. To understand the mechanisms of protein regulation for cold-induced sweetening in potato tubers, a comparative proteomic approach was used to analyse the differentially expressed proteins both during control (25 °C, 30 days) and cold treatment (4 °C, 30 days) using two-dimensional gel electrophoresis. Quantitative image analyses indicated that there were 25 protein spots with their intensities significantly altered more than twofold. Of these proteins, 9 were up-regulated, 13 were down-regulated, 2 were absent, and 1 was induced in the cold-stored tubers. The MALDI-TOF/TOF MS analyses led to the identification of differentially expressed proteins that are involved in several processes and might work cooperatively to maintain metabolic homeostasis in tubers during low-temperature storage. The preponderance of metabolic proteins reflects the inhibition of starch re-synthesis and the accumulation of sugars in carbon fluxes, linking starch–sugar conversion. The respiration-related proteins suggest the transfer of respiratory activity from aerobic respiration to anaerobic respiration in the cold-stored tubers. The proteins associated with defence appear to protect the tuber cells from low-temperature stress. Some heat shock proteins that act as chaperones also displayed a differential expression pattern, suggesting a potentially important role in cold-stored tubers, although their exact contribution remains to be investigated. The proposed hypothetical model might explain the interaction of these differentially expressed proteins that are associated with cold-induced sweetening in tubers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call