Abstract

The photochromic phenomenon has been recently used as a fascinating technology in the development of highly efficient anti-counterfeiting materials with dual-mode security encoding of concurrent photochromism and fluorescence emission. Herein, we successfully developed lanthanide-doped aluminate nanoparticles (LAN)/polystyrene (PS) electrospun nanofibers as novel secure authentication films. Different ratios of lanthanide-doped aluminate nanoparticles were mixed with polystyrene-based copolymer solutions in N,N -dimethylformamide (DMF) and subjected to electrospinning to afford photochromic and fluorescent nanofibers. The generated electrospun nanofibers demonstrated a narrow diameter distribution, a smooth surface and well-defined morphological properties. The produced smart nanofibers were applied onto cellulose paper sheets to demonstrate a dual-mode secure strategy with a simple and rapid authentication. LAN was prepared in the nano-scale for better dispersion in PS, which guarantee the formation of transparent films. LAN was studied by transmission electron microscope (TEM) and X-ray diffraction (XRD). LAN displayed diameters of 5–12 nm. On the other hand, the fibrous diameters of LAN-PS samples were studied by scanning electron microscopy (SEM) to indicate diameters of 200–300 nm. The induced security marking was invisible (363 nm) under visible daylight turning into visible green (520 nm) color under ultraviolet irradiation demonstrating a bathochromic shift. Both excitation and emission displayed high intensities. The security marking was fully reversible under ultraviolet/visible irradiation cycles without fatigue. Those advantageous properties could be attributed to the high surface area of the chromogenic nanofibrous films to result in high absorption of light leading to strong optical dual-mode photo-responsiveness. The generated LAN-PS hybrid films showed improved hydrophobic properties with increasing LAN. The nanofibers showed transparency, stretchability and flexibility. The present strategy can be reported as an efficient technology to develop many anti-counterfeiting products toward a better market with social and economic values to avoid fake products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call