Abstract

The development of advanced solid lubricants is of considerable importance to space tribology. The most common solid lubricant coatings today are based on MoS2, lead or PTFE. However, none of these coatings can simultaneously fulfill all specifications, with regard to friction and wear, under ambient atmosphere and in vacuum. Consequently research is currently being aimed at further improvements in advanced solid lubricant coatings. One approach is to optimize Diamond Like Carbon (DLC) coatings to meet the specifications. In this study, the feasibility of highly hydrogenated DLC coatings (∼ 50 at% hydrogen) for solid lubricant applications is assessed. The coatings were deposited on AISI 52100 steel substrates and tested in ball-on-disc tribometers in air, vacuum and dry nitrogen environments. It was found that the test environment has the most decisive effect on both friction and wear rate, while these parameters are only slightly affected by varying the applied load under a given atmosphere. It was concluded that highly hydrogenated DLC coatings are capable of yielding ultra-low friction values in vacuum (μ = 0.008). The average friction coefficient range obtained in humid air, dry nitrogen and vacuum for the range of applied loads were respectively 0.22 to 0.27, 0.02 to 0.03, and 0.007 to 0.013. Coating lifetime was over 100 000 cycles for the entire load range tested in air and nitrogen, but was affected by the applied load as far as tests in vacuum are considered. The specific wear rate was lower than 1×10–5 mm3 N-1 m-1 under all test conditions, which was considered favourable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.