Abstract

We report the design, nanofabrication, and characterization of high-quality polymer-based micromirror structures employing the 3D two-photon polymerization lithography technique. Compared to conventional microcavity approaches, our innovative concept provides microstructures, which allow fast prototyping. Moreover, our polymer-based mirrors are cost effective and environmentally sensitive, as well as compatible with a wide range of wavelengths from near-infrared to the telecom C-band. We demonstrate polymer/air distributed Bragg reflectors and full microcavity structures with up to 14 mirror pairs with a target wavelength of 1550 nm and a reflectivity close to 99%. Additionally, our 3D printed micromirrors are reproducible and mechanically stable, and enable hybrid nanophotonic devices based on quantum dots, molecules, or 2D quantum materials as the active medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.