Abstract

The authors present optical and electrical data for long wavelength (573–601nm) InGaN∕GaN multiple quantum well light emitting diodes (LEDs) grown by metal organic chemical vapor deposition. These results are achieved by optimizing the active layer growth temperature and the quantum well width. Also, the p-GaN is grown at low temperature to avoid the disintegration of the InGaN quantum wells with high InN content. A redshift is observed for both the green and yellow LEDs upon decreasing the injection current at low current regime. In the case of the yellow LED, this shift is enough to push emission into the amber (601nm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.