Abstract
Cell bodies of trigeminal nerves, which are located in the trigeminal ganglion, are completely surrounded by satellite glial cells and together form a functional unit that regulates neuronal excitability. The goals of this study were to investigate the cellular organization of the rat trigeminal ganglia during postnatal development and correlate those findings with expression of proteins implicated in neuron-glia interactions. During postnatal development there was an increase in the volume of the neuronal cell body, which correlated with a steady increase in the number of glial cells associated with an individual neuron from an average of 2.16 at birth to 7.35 on day 56 in young adults. Interestingly, while the levels of the inwardly rectifying K+ channel Kir4.1 were barely detectable during the first week, its expression in satellite glial cells increased by day 9 and correlated with initial formation of functional units. Similarly, expression of the vesicle docking protein SNAP-25 and neuropeptide calcitonin gene-related peptide was readily detected beginning on day 9 and remained elevated throughout postnatal development. Based on our findings, we propose that the expression of proteins involved in facilitating neuron-glia interactions temporally correlates with the formation of mature functional units during postnatal development of trigeminal ganglion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.