Abstract

Due to the unfavorable scaling of quantum chemical methods one usually has to compromise between accuracy and computational effort with growing system size. Finding approximations that overcome this constraint sparked the interest of researchers which eventually led to the development of so-called multiscale methods. This thesis pertains to a multiscale method called Frozen-Density Embedding theory (FDET), in which the system is described by means of two independent quantum mechanical descriptors, the wavefunction of the embedded species and the charge density of the environment. This work examined the effect of the non-linearity of FDET equations. The second topic of this thesis was the development and implementation of FDET-based methods for ground and excited states. For this purpose the fdeman module, which manages all steps of an FDET calculation, was implemented into the quantum chemistry software package Q-Chem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.