Abstract

State-of-the-art methods for the calculation of electronic structures of molecules predominantly use Gaussian basis functions. The algorithms employed inside existing code packages are consequently often highly optimised keeping only their numerical requirements in mind. For the investigation of novel approaches, utilising other basis functions, this is an obstacle, since requirements might differ. In contrast, this thesis develops the highly flexible program package molsturm, which is designed in order to facilitate rapid design, implementation and assessment of methods employing different basis function types. A key component of molsturm is a Hartree-Fock (HF) self-consistent field (SCF) scheme, which is suitable to be combined with any basis function type. First the mathematical background of quantum mechanics as well as some numerical techniques are reviewed. Care is taken to emphasise the often overlooked subtleties when discretising an infinite-dimensional spectral problem in order to obtain a finite-dimensional eigenproblem. Common quantum-chemical methods such as full configuration interaction and HF are discussed providing insight into their mathematical properties. Different formulations of HF are contrasted and appropriate SCF solution schemes formulated. Next discretisation approaches based on four different types of basis functions are compared both with respect to the computational challenges as well as their ability to describe the physical features of the wave function. Besides (1) Slater-type orbitals and (2) Gaussian-type orbitals, the discussion considers (3) finite elements, which are piecewise polynomials on a grid, as well as (4) Coulomb-Sturmians, which are the analytical solutions to a Schrodinger-like equation. A novel algorithmic approach based on matrix-vector contraction expressions is developed, which is able to adapt to the numerical requirements of all basis functions considered. It is shown that this ansatz not only allows to formulate SCF algorithms in a basis-function independent way, but furthermore improves the theoretically achievable computational scaling for finite-element-based discretisations as well as performance improvements for Coulomb-Sturmian-based discretisations. The adequacy of standard SCF algorithms with respect to a contraction-based setting is investigated and for the example of the optimal damping algorithm an approximate modification to achieve such a setting is presented. With respect to recent trends in the development of modern computer hardware the potentials and drawbacks of contraction-based approaches are evaluated. One drawback, namely the typically more involved and harder-to-read code, is identified and a data structure named lazy matrix is introduced to overcome this. Lazy matrices are a generalisation of the usual matrix concept, suitable for encapsulating contraction expressions. Such objects still look like matrices from the user perspective, including the possibility to perform operations like matrix sums and products. As a result programming contraction-based algorithms becomes similarly convenient as working with normal matrices. An implementation of lazy matrices in the lazyten linear algebra library is developed in the course of the thesis, followed by an example demonstrating the applicability in the context of the HF problem. Building on top of the aforementioned concepts the design of molsturm is outlined. It is shown how a combination of lazy matrices and a contraction-based SCF scheme separates the code describing the SCF procedure from the code dealing with the basis function type. It is discussed how this allows to add a new basis function type to molsturm by only making code changes in a single integral interface library. On top of that, we demonstrate by the means of examples how the readily scriptable interface of molsturm can be employed to implement and assess novel quantum-chemical methods or to combine the features of molsturm with existing third-party packages. Finally, the thesis discusses an application of molsturm towards the investigation of the convergence properties of Coulomb-Sturmian-based quantum-chemical calculations. Results for the convergence of the ground-state energies at HF level are reported for atoms of the second and the third period of the periodic table. Particular emphasis is put on a discussion about the required maximal angular momentum quantum numbers in order to achieve convergence of the discretisation of the angular part of the wave function. Some modifications required for a treatment at correlated level are suggested, followed by a discussion of the effect of the Coulomb-Sturmian exponent. An algorithm for obtaining an optimal exponent is devised and some optimal exponents for the atoms of the second and the third period of the periodic table at HF level are given. Furthermore, the first results of a Coulomb-Sturmian-based excited states calculation based on the algebraic-diagrammatic construction scheme for the polarisation propagator are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call