Abstract

In the current study, flexible films of polyvinyl alcohol (PVA): chitosan (CS) solid polymer blend electrolytes (PBEs) with high ion transport property close enough to gel based electrolytes were prepared with the aid of casting methodology. Glycerol (GL) as a plasticizer and sodium bromide (NaBr) as an ionic source provider are added to PBEs. The flexible films have been examined for their structural and electrical properties. The GL content changed the brittle and solid behavior of the films to a soft manner. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) methods were used to examine the structural behavior of the electrolyte films. X-ray diffraction investigation revealed that the crystalline character of PVA:CS:NaBr declined with increasing GL concentration. The FTIR investigation hypothesized the interaction between polymer mix salt systems and added plasticizer. Infrared (FTIR) band shifts and fluctuations in intensity have been found. The ion transport characteristics such as mobility, carrier density, and diffusion were successfully calculated using the experimental impedance data that had been fitted with EEC components and dielectric parameters. CS:PVA at ambient temperature has the highest ionic conductivity of 3.8 × 10 S/cm for 35 wt.% of NaBr loaded with 55 wt.% of GL. The high ionic conductivity and improved transport properties revealed the suitableness of the films for energy storage device applications. The dielectric constant and dielectric loss were higher at lower frequencies. The relaxation nature of the samples was investigated using loss tangent and electric modulus plots. The peak detected in the spectra of tanδ and M” plots and the distribution of data points are asymmetric besides the peak positions. The movements of ions are not free from the polymer chain dynamics due to viscoelastic relaxation being dominant. The distorted arcs in the Argand plot have confirmed the viscoelastic relaxation in all the prepared films.

Highlights

  • Renewable energy sources are those derived from naturally replenishing sources, including the sun, wind, storms, seas, seeds, algae, geothermal, and biodegradable polymer materials, and they have attracted great interest due to the growing oil crisis and environmental concerns [1,2]

  • The vibrational peaks of OH, C–O, C–H, CH2, and C=O are used to identify the distinctive bands of polyvinyl alcohol (PVA) and CS polymers [32]

  • Blend polymer compatibility is shown by changes in the vibrational frequency of the peaks and improved amorphous phase in the PVA:CS

Read more

Summary

Introduction

Renewable energy sources are those derived from naturally replenishing sources, including the sun, wind, storms, seas, seeds, algae, geothermal, and biodegradable polymer materials, and they have attracted great interest due to the growing oil crisis and environmental concerns [1,2]. Polymers are a prominent issue in material science lately, solid state solutions, which are an example of ion conducting polymers [4]. Because they are important in energy storage devices, including fuel cells, hybrid power sources, supercapacitors, and batteries, solid PEs (SPEs) have been attracting a lot of recent support [5–8]. Super-ionic conductors are solid substances in which charged atoms, known as ions, carry electric current [10]. These materials’ electrical conductivity is vastly different from that of conventional semiconductors. Electric charge transport is linked to mass transfer in super-ionic conductors [10,11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call