Abstract
Patient-specific therapeutic cells derived from induced pluripotent stem (iPS) cells may bypass the ethical issues associated with embryonic stem (ES) cells and avoid potential immunological reactions associated with allogenic transplantation. It is critical, for the ultimate clinical applicability of iPS cell-derived therapies, to establish feeder-free cultures that ensure efficient differentiation of iPS cells into therapeutic progenitors. It is also necessary to understand if iPS cell-derived progenitors differ from those derived from ES cells. In this study, we compared the efficiency of three different feeder-free cultures for differentiating mouse iPS cells into ckit+sca1+ hematopoietic progenitor cells (HPCs) and compared how differentiation and functionality varies between ES and iPS cells. Our results indicated that both iPS and ES cells can be efficiently differentiated into HPCs in suspension cultures supplemented with secretion factors from mouse bone marrow stromal cells (OP9-DL1 conditioned medium). The functionality of these cells was demonstrated by differentiation into CD11c+ dendritic cells (DCs). Both ES and iPS-derived DCs expressed activation molecules (CD86, CD80) in response to LPS stimulation and stimulated T cell proliferation in a mixed lymphocyte reaction (MLR). Extensive quantitative RT-PCR studies were used to study the differences in gene expression profiles of ckit+sca1+ cells generated from the various culture systems as well as differences between ES-derived and iPS-derived cells. We conclude that a feeder-free system using stromal conditioned medium can efficiently generate HPCs as well as functional DCs from iPS cells and the generated cells have similar gene expression profile as those from ES cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.