Abstract

BackgroundSnake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000–400,000 envenomations occur each year, resulting in 3,500–32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique.MethodsAdult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison.ResultsThe purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 106, 3.60 x 106 and 3.50 x 106 U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 106, 3.07 x 106 and 2.60 x 106 U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 106 and 1.67 x 106 U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 106 U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection.ConclusionOur results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims.

Highlights

  • Snake envenoming prevention and treatment has been a worldwide effort in underdeveloped and developing countries in Africa, Asia and South America

  • We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae

  • Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims

Read more

Summary

Introduction

Snake envenoming prevention and treatment has been a worldwide effort in underdeveloped and developing countries in Africa, Asia and South America. In sub-Saharan Africa, it is estimated that 90,000–400,000 envenomations occur per year, resulting in 3,500–32,000 fatalities [1]. Snake envenoming is caused mainly by snakes from the Viperidae (Echis spp. and Bitis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. In an effort to solve the problem, African authorities began importing antivenoms from India and Asia. These antivenoms are not specific against African snakes and this treatment has little efficacy, causing the population to be distrustful and look for alternatives, such as traditional healing routes [10]. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.