Abstract

ABSTRACTAutomatic modulation classification (AMC) is explained as accurately identifying a modulation of a received signal. AMC systems are a significant component of cognitive radio network (CRN) systems. It is difficult to perform modulation classification on an unsettled radio signal without any previous knowledge of the signal's properties. In this work, the deep learning‐aided AMC is suggested to solve the difficulties of the existing models. In the proposed approach, the modulation classification is attained by performing two steps: (a) data collection and (b) classification. Initially, the required data related to the cognitive environment is collected from online resources. Later, the garnered data are passed to the classification phase. The AMC is performed by the adaptive and dilated hybrid network (ADHN), which is the combination of a temporal convolution network (TCN) and a gated recurrent unit (GRU). The ADHN accurately classifies the modulation even in a noisy environment. The classification performance of the ADHN is further boosted by tuning the parameters of this network via the enriched remora optimization algorithm (EROA). This proposed modulation classification model is suitable for various channels. The comparative validation is performed to ensure the usefulness of the designed system via several measures. By experimental analysis, the proposed system acquires the high value of accuracy, precision, and f1‐score by 94.2, 80.2, and 86.7, respectively, when compared with classical approaches. In addition to this, other metrics are considered and obtained with more true value and less false value. Thus, it ensures the effectiveness of classifying the modulation types in CRNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.