Abstract

The serious hazard presented by unforgiving timber utility poles installed along the nation’s roadways has long been recognized by the roadside safety community. However, relatively little attention has been devoted to the development of safer utility poles beyond breakaway timber pole designs. A new generation of utility pole designs that use energy-absorbing composite materials offers a solution to the development and implementation of safer utility poles that have a cost advantage over breakaway timber poles and can be tailored to achieve the desired functional performance and energy absorption characteristics inherently without the need for additional strength members or add-on energy absorption devices. This research has resulted in the development of an energy-absorbing fiberglass-reinforced composite (FRC) utility pole design that meets structural performance requirements for environmental loading in accordance with the National Electrical Safety Code for Class 4 poles and safety performance criteria in compliance with NCHRP Report 350 Test Level 2 conditions for utility poles. Developmental testing and analyses were performed to support the development of a prototype design for demonstration testing. Full-scale crash testing has demonstrated the ability of the composite pole to absorb the vehicle’s impact energy by progressive crushing and fracture propagation as the vehicle is brought to a controlled stop. In addition to offering improved safety performance, the energy-absorbing FRC pole provides significant functional advantages, such as reduced weight, an improved strength-to-weight ratio, increased longevity, ease of installation, low maintenance, and resistance to environmental degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call