Abstract

Abstract This paper examines development of novel piezoelectric acoustic sensors, which are capable of sensing high frequency acoustic emissions in a composite/metallic plate. The fabrication of the piezoelectric acoustic sensors, made from piezoceramic ribbons, is described in the paper. An attempt was made to build directionality into the sensing system itself. Continuous sensors placed at right angles on a plate are discussed as a new approach to measure and locate the source of the acoustic waves. Novel signal processing algorithms based on bio-inspired neural systems for spatial filtering of large numbers of embedded sensor arrays in laminated composite media are presented. It is expected that the present work would help in the development of microelectronic sensing aiding diagnostics and prognostics techniques for highly efficient health monitoring of integrated aerospace vehicles and structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call