Abstract
A specially-built EMM (Electrochemical Micro Machining)/PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of spindle recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloride are investigated in this study. The former electrolyte with few pits on the surface of workpiece has better machine-ability than the latter one with many pits on the surface of workpiece. It is easier to control the machining depth precisely with pulse electrical current than direct electrical current. This paper also presents an identification method for the machining depth by in-process analysis of applied electrical current and interelectrode gap size. The interelectrode gap characteristics, including pulse electrical current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed using the model and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.