Abstract

In this paper, the employment of microdosimetric dose-equivalent meters in radiation protection is described considering the advantages of introducing microdosimetric methods into radiation protection, the technical suitability of such instruments for measuring dose equivalent, and finally technical requirements, constraints and solutions together with some examples of instruments and experimental results. The advantage of microdosimetric methods in radiation protection is illustrated with the evaluation of dose-mean quality factors in radiation fields of unknown composition and with the methods of evaluating neutron- and gamma-dose fractions. --It is shown that there is good correlation between dose-mean lineal energy, yD, and the ICRP quality factor. --Neutron- and gamma-dose fractions of unknown radiation fields can be evaluated with microdosimetric proportional counters without recurrence to other instruments and methods. The problems of separation are discussed. The technical suitability of microdosimetric instruments for measuring dose equivalent is discussed considering the energy response to neutrons and photons and the sensitivity in terms of dose-equivalent rate. Then, considering technical requirements, constraints, and solutions, the problems of the large dynamic range in LET, the large dynamic range in pulse rate, geometry of sensitive volume and electrodes, evaluation of dose-mean quality factors, calibration methods, and uncertainties are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.