Abstract
Abstract Volatile organic compounds (VOCs) in ambient air can participate in photochemical reactions, which lead to the generation of secondary pollutants such as ozone and aerosol. So real-time and accurate monitoring of atmospheric VOCs plays an important role in the study of the causes of air pollution. On the basis of proton transfer reaction mass spectrometry (PTR-MS) research, a novel dipolar proton transfer reaction mass spectrometer (DP-PTR-MS) for real-time and on-line monitoring of atmospheric VOCs was developed. Compared with conventional PTR-MS with one kind of reagent ion H3O+, DP-PTR-MS had three kinds of reagent ions H3O+, OH−, (CH3)2COH+, which could be switched according to the actual detection need. So DP-PTR-MS can improve the qualitative ability and expand the detection range effectively. The reagent ion H3O+ can be used for detecting VOCs whose proton affinities are greater than that of H2O. The reagent ion OH− can be used to identify VOCs cooperating with the reagent ion H3O+, and can also be used for detecting some inorganic substances such as CO2. The reagent ion (CH3)2COH+ can be used for accurately detecting NH3 under interference elimination circumstances. The limit of detection (LOD) and sensitivity of DP-PTR-MS were measured by using six kinds of standard gases. The results showed that the LOD for detecting toluene was 7 × 10−12 (V/V) and the sensitivity for detecting ammonia reached 126 cps/10−9 (V/V). The ambient air in Hefei city was on-line and real-time monitored for continuous 78 h with DP-PTR-MS. The results showed that the newly developed DP-PTR-MS could be used for long-term and real-time monitoring atmospheric VOCs at the concentration of 10−12 (V/V) level. DP-PTR-MS is an important tool to the study of the causes of atmospheric pollution and the monitoring of trace VOCs emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.