Abstract

Real-time monitoring of volatile organic compounds (VOCs) is critical for a better understanding of chemical processes in ambient air or making minute-by-minute decisions in emergency situations. Proton transfer reaction mass spectrometry (PTR-MS) is nowadays the most commonly used technique for real-time monitoring of VOCs while membrane single photon ionization mass spectrometry (MI-SPI-MS) is a promising MS technique for online detection of trace VOCs. Here, to evaluate the potential of MI-SPI-MS as a complementary tool to PTR-MS, a comprehensive comparison has been performed between MI-SPI-MS and PTR-MS. By using two sets of standard gas mixtures TO15 and PAMS, SPI-MS shows advantages in the detection of ≥C5 alkanes, aromatics and halogens; especially for aromatics, the LODs can reach the ppt level. PTR-MS has performed better in the detection of alkenes, ketones and aldehydes. For outdoor measurements, a number of VOCs have been detected while using MI-SPI-MS and PTR-MS in parallel. Consistent temporal variations have been observed for toluene, C8-aromatics and C9-aromatics by the two instruments, with a more sensitive response from the MI-SPI-MS. Thus by measuring both standard gas mixture and complex ambient air samples, we have successfully demonstrated that MI-SPI-MS will be a helpful tool to provide important complementary information on aromatics and alkanes in air, and proper application of MI-SPI-MS will benefit the real-time monitoring of trace VOCs in relative fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.