Abstract

Robotic roller hemming is currently one of the most used solution for joining metal sheets in automotive industry, especially for those production lines which need to favor flexibility with respect to raw productivity and is mostly employed to assemble car doors. Hemming is a fairly delicate process since it does not only suffice a technical requirement – to join two panels together – but also an aesthetical one, since the joint panels are an integral part of the vehicle design and as such an important selling point. An unpredicted rupture or an advanced degradation condition of the system would lead to a significant loss in the quality of the final product or to a sudden stoppage of the production line. The development of a PHM system for hemming devices would hence provide a significant advantage, especially if designed to work for both new and legacy equipment. In this paper, we provide the results of a preliminary analysis of a new PHM framework for robotic roller hemming studied to work without having access to PLC data, the employed data-driven methodology is detailed and applied to the case of increasing wear in the head finger roll. Results from different prognostics routines are hence presented and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.