Abstract

Abstract The Electron-Tracking Compton Camera (ETCC), which is a complete Compton camera that tracks Compton scattering electrons with a gas micro time projection chamber, is expected to open up MeV gamma-ray astronomy. The technical challenge for achieving several degrees of the point-spread function is precise determination of the electron recoil direction and the scattering position from track images. We attempted to reconstruct these parameters using convolutional neural networks. Two network models were designed to predict the recoil direction and the scattering position. These models marked 41$^\circ$ of angular resolution and 2.1 mm of position resolution for 75 keV electron simulation data in argon-based gas at 2 atm pressure. In addition, the point-spread function of the ETCC was improved to 15$^\circ$ from 22$^\circ$ for experimental data from a 662 keV gamma-ray source. The performance greatly surpassed that using traditional analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.