Abstract

Adiabatic Demagnetization Refrigeration (ADR) does not use working fluids contrary to conventional refrigerators that make use of the fluid density difference, which leads to superiority of the ADR under the weak gravity condition. In this study, we developed a continuous ADR system to provide constant cooling temperatures ∼0.1 K. The system consists of four stages of magnetic materials and magnets cascaded with heat switches. The magnetic materials CPA and GdLiF4 are used for 3 stages between 0.1K and 1.4 K, and single stage between 1.4 K and 4 K, respectively. Passive heat switches are used for the stages > 0.3 K and a superconducting heat switch is used for the continuous stage at ∼0.1 K. A G-M cycle cooler with a 100 V compressor unit is used to cool the ADR and cryostat shieldings. Total mass of flight model is less than 60 kg. Cooling tests with Transition Edge Sensor on the ground showed that the ADR provided continuous cooling temperatures between 105 mK and 120 mK and it successfully operated the TES. Airborne flight experiments confirmed the ability of the cooling system under the mili-gravity condition. The experimental results showed that the ADR could provide stable temperature under the weak gravity, however, strong vibrations coming from turbulence or takeoff affected to the stability of ADR cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.