Abstract

The cytological events of wall modification in the endodermis and exodermis of Allium cepa L. roots were examined with fluorescence and transmission electron microscopy. In the endodermis, Casparian bands, suberin lamellae, and tertiary walls developed in succession. At the site of the future Casparian band, the plasma membrane was bound to the wall before deposition of detectable hydrophobic components in the radial wall. Suberin lamellae were deposited on the inner faces of the primary walls, first along the outer tangential walls and then the inner tangential walls. On both walls, segments of the lamellae were formed earlier in primary pit fields than at nonprimary pit field regions. Suberin lamellae then extended to the radial walls. When they reached the Casparian bands, the lamellae intruded between the bound plasma membranes and the walls, so that the cells' plasma membranes remained intact. In this way, suberin lamellae that were continuous around the cells were laid down. Later, tertiary walls were deposited internal to the suberin lamellae. None of the wall modifications interrupted the symplastic connections of the endodermis. During suberin lamella and tertiary wall formation, more dictyosomes and ER profiles appeared than during Casparian band development. In the exodermis, although Casparian bands were readily detected with fluorescence microscopy, they were rarely detected with electron microscopy. Suberin lamellae were formed in long cells severing their plasmodesmata. As in the endodermis, dictyosomes and ER were prominent during suberin lamella formation. Tertiary walls were not formed in the exodermis.Key words: Allium cepa, Casparian band, endodermis, exodermis, suberin lamella, ultrastructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call