Abstract

The endodermis and exodermis are the inner- and outermost cortical layers, respectively, of a root. Both are characterized by the development of Casparian bands in their anticlinal walls. Endodermal Casparian bands normally appear within 10 mm of the root tip, while exodermal Casparian bands are typically deposited farther from the tip. All Casparian bands contain the biopolymers lignin and suberin, allowing the endodermis and exodermis to serve as filtration sites for the passive movement of ions between the soil solution and the stele. Later in development, suberin lamellae are frequently deposited as secondary walls, which will reduce the transmembrane transport of ions and water. In some species, tertiary walls are also formed; their main function is postulated to be mechanical support of the root. Recent research with fluorescence and electron microscopy has revealed some important details of development and structure of these wall modifications. Further, chemical analyses of enzymatically isolated wall modifications have shown the chemical basis for the endodermis and exodermis as apoplastic barriers. Studies of Arabidopsis at the molecular level are shedding light on the genetic control of endodermal morphogenesis. In contrast, molecular aspects of exodermal development are totally unknown. Future work will benefit from a combined molecular and biochemical approach to the endodermis and exodermis.Key words: Casparian band, endodermis, exodermis, lignin, molecular biology, suberin, suberin lamella, tertiary wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call