Abstract

Two-stage rotary compressors are gaining popularity because of their ability to reduce operating and energy costs over the entire compressor life cycle. In this work, a capacity modulation compressor based on a two-stage rotary compressor (CMCTR) is developed to improve the performance of the rotary compressor system. The working principle of the CMCTR is presented and the cycle efficiency of the compressor through two-stage compression is numerically investigated. The CMCTR model considers mass and energy balance for a control volume, the internal leakage condition for all leakage paths, the discharge valve motion, and the force and moment balance. For simulation results, the motor efficiency is estimated with respect to shaft power and the pressure during an entire cycle is obtained with respect to the compression volume for saving mode and power mode. The optimum efficiency of the CMCTR is obtained for the modulation for these modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.