Abstract

Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ([Formula: see text]) where previous work has demonstrated a long-range (∼200 nm) profile in local [Formula: see text] is established between immiscible glassy and rubbery polymer domains when the polymer-polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus [Formula: see text] is established when the polymer-polymer interface ([Formula: see text]5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad [Formula: see text] profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus [Formula: see text] spanning [Formula: see text]180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in [Formula: see text] and [Formula: see text] arise from a coupling of the spectrum of vibrational modes across the polymer-polymer interface as a result of acoustic impedance matching of sound waves with [Formula: see text] nm during interface broadening that can then trigger density fluctuations in the neighboring domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.