Abstract

Recently, many studies have focused on the development of humanoid biped robot platforms. Some of the well-known humanoid robots are Honda’s humanoid robots, the WABIAN series of robots from Waseda University, Partner, QRIO, H6 and H7, HRP and JOHNNIE. Given that humanoids are complex, expensive and unstable, designers face difficulties in constructing the mechanical body, integrating the hardware system, and realizing real-time motion and stability control based on human-like sensory feedback. Among the robots, HRP and ASIMO are the most well known humanoid robot platforms. HRP-3P is a humanoid robot developed jointly by the National Institute of Advanced Industrial Science and Technology and Kawada Industries, Inc in Japan. It stands 1.6 m tall, weighs 65 kg, and has 36 degrees of freedom (DOF). Upgraded from HRP-2, the new platform is protected against dust and water. In addition, Honda has unveiled a new type of ASIMO, termed the ASIMO Type-R, which stands 1.3 m tall, weighs 54 kg, and has 34 DOF. With the i-WALK technology, this robot has an impressive walking feature: it can walk at 2.7 km/h, and run at 6 km/h. HUBO is essentially an upgraded version of KHR-2. The objective of the development of HUBO was to develop a reliable and handsome humanoid platform that enables the implementation of various theories and algorithms such as dynamic walking, navigation, human interaction, and visual and image recognition. With the focus on developing a human-friendly robot that looks and moves like humans, one focus was on closely aligning the mechanical design with an artistic exterior design. This chapter also discusses the development of control hardware and the system integration of the HUBO platform. Numerous electrical components for controlling the robot have been developed and integrated into the robot. Servo controllers, sensors, and interface hardware in the robot have been explained. Electrical hardware, mechanical design, sensor technology and the walking algorithm are integrated in this robot for the realization of biped walking. This system integration technology is very important for the realization of this biped humanoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.