Abstract

Bioactive-packaging films based on polylactic acid (PLA), acetyl tributyl citrate (ATBC), and tea polyphenol (TP) were prepared by melt blending. Results of mechanical-property test revealed that adding ATBC and TP can significantly improve mechanical properties of PLA. The shift of CO to lower wavelengths in FTIR and the morphology of the films in SEM indicated physical or chemical interactions in the PLA/ATBC/TP films. The antioxidant, and antibacterial activities of the PLA/ATBC films increased dramatically (P<0.05) with increased TP amount. The antioxidant activity of the films with 1 % TP was equivalent to that of 300 mg/L l-ascorbic acid, whereas PLA/ATBC/TP films with 0.5 % and 1 % TP concentration were effective in inhibiting Staphylococcus aureus and Escherichia coli within almost 5 h (P<0.05). The PLA films changed from transparent to opaque and from yellow to red after combining with ATBC or TP, respectively. The overall migration of the films in 3 % acetic acid and 10 % ethanol did not exceed the overall migration limit. All these findings indicated potential of the PLA/ATBC/TP films in active-packaging application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call