Abstract

Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is an important approach for the treatment of some skin diseases and cancers. A major defect of this approach is that it is difficult for 5-ALA to accumulate around lesions in deeper regions of tissue, resulting in poor conversion to the active fluorophore and photodynamic efficiencies. Because of their targeting and controlled release abilities, nanogel carriers could solve this problem. In this paper, nanogels were prepared by using micro-emulsion polymerization with various biodegradable polyester crosslinkers (L-lactide and ε-caprolactone). The swelling and degradation properties and entrapment efficiency, drug loading and drug release ability of the nanogels were investigated. Nanogels co-cultured with skin cancer cells (A2058) allowed the efficiency of the PDT in vitro to be demonstrated. The results showed that the swelling rate of hydrogels reduced with increasing crosslinker levels, which caused a slow-down in the release of 5-ALA, but lipase accelerated degradation of nanogels increased 5-ALA concentrations in tumor cells and leading to higher PDT efficiency. It was proved by in vivo experiment indicating that the development of skin cancer tissues were efficiently inhibited by the 5-ALA loaded nanogels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call