Abstract

The object of research is the processes of structure formation and modeling of the properties of a specialized binder. The development of new binding materials based on production waste with high early strength indicators could make it possible to speed up construction period and is one of the urgent tasks at present. This study focused on the creation of binders based on the СаО–Fe2O3 system. The developed binder of the СаО–Fe2O3 system has the following composition: limestone – 26 %; red slime – 74 %, which has a dense fine-porous structure and high early strength indicators – 22.5 MPa with a density of 1960 kg/m3. There is also an increase in the average density of samples annealed at a temperature of 1200 ℃ for 60 minutes, ground and mixed with water, in comparison with samples fired at 1100 ℃ for 60 minutes, by 500 kg/m3, due to new formations. The prospect of using modified composite binders with special functional properties has been substantiated. The use of production waste based on the СаО-Fe2O3 system could make it possible to obtain materials with high physical and mechanical properties, which makes them promising for application in various areas of the construction industry. The development of such binders will help reduce the environmental impact of the construction industry, owing to the use of affordable and effective components. This approach will not only contribute to the improvement of the quality of building materials but also help reduce the ecological burden on the environment by using alternative resources and industrial waste. The developed binder could be used for the development of solutions for 3d printing, as well as repair of concrete coatings

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.