Abstract
Mixed ferrite grain structures, which have fine- and coarse-grain regions and showing “bimodal” grain size distributions, have been produced by rapid intercritical annealing of warm-rolled (or cold-rolled) samples. Microstructural changes have been analyzed using dilatometric studies, size prediction of transformed and recrystallized grains, and microtexture measurements. Fine austenite grains (<5 μm) developed during rapid annealing and transformed into fine-ferrite grains (2 to 4 μm) after cooling. Coarse-ferrite grains (28 to 42 μm) resulted from the recrystallization and growth of deformed ferrite. The effect of heating rate on microstructural morphologies during intercritical annealing has also been studied. A slow rate of heating (30 K/s) developed a uniform distribution of fine-ferrite grains and austenitic islands, while rapid heating (300 K/s) generated coarse blocks of austenite, elongated along the prior-pearlitic regions, in the ferrite matrix. As expected, bimodal ferrite grain structures or fine-scale dual-phase structures showed superior combination of tensile strength and ductility, compared to the ultrafine-grained steels.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have