Abstract
Abstract In this study, we developed backside buried metal (BBM) layer technology for three-dimensional integrated circuits (3D-ICs). In this technology, a BBM layer for global power routing is introduced in the large vacant area on the backside of each chip and is parallelly connected with the frontside routing of the chip. The resistances of the power supply (VDD) and ground (VSS) lines consequently decrease. In addition, the BBM structure acts as a decoupling capacitor because it is buried in the Si substrate and has metal–insulator–silicon structure. Therefore, the impedance of power delivery network can be reduced by introducing the BBM layer. The fabrication process of the BBM layer for 3D-ICs was simple and compatible with the via-last through-silicon via (TSV) process. With this process, it was possible to fabricate the BBM layer consisting of electroplated Cu (thickness: approximately 10 μm) buried in the backside of the CMOS chip (thickness: 43 μm), which was connected with the frontside routing of the chip using 9 μm-diameter TSVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.