Abstract
This paper presents Feedforward Neural network (FFNN) and Elman network controllers to control the maximum power point tracking (MPPT) of photovoltaic (PV). MPPT is a method used to extract the maximum available power from photovoltaic module by designs them to operate efficiently. Thus, cell temperatures and solar irradiances are two critical variable factors to determine PV output powers. The performances of the controller is analyzed in four conditions which are i) constant irradiation and temperature, ii) constant irradiation and variable temperature, iii) constant temperature and variable irradiation and iv) variable temperature and irradiation. The proposed systems are simulated by using MATLAB-SIMULINK. Based on the results, FFNN controller has shown the better performance compare to the Elman network controller during partial shading conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have