Abstract

In this study, we suggested two types of novel metallized tip for the apertureless near-field scanning optical microscope probe. The first is a silver nanorod immobilized tip and the other is a double metallized probe. We calculated the electric field enhancement factor and the electric field distribution of a single sphere, aggregated spheres, an ellipse and a nanorod by the finite-differential time-domain method to improve the silver nanosphere immobilized tip developed in our previous studies. The enhanced field of the nanorod is localized at the external surfaces. The simulation results of the nanorod revealed that the position of the maximum peak is shifted to a longer wavelength and that its electric field enhancement factor increases as the aspect ratio increases. Thus, we developed the silver nanorod immobilized tip, and the tip-enhanced Raman spectrum of rhodamine 6G molecule on the substrate could be measured by the tip though it could not be detected by the previous nanosphere immobilized tip. Further, the finite-differential time-domain calculation predicted that the double metallized tips considerably enhance the electric field and that its enhancement factor in the longer wavelength region (500-600 nm) does not decrease when the tip is rounded. The results show that the proposed metallized tips were useful for the apertureless near-field scanning optical microscope system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call