Abstract
In this study, the first ultra-high performance liquid chromatography-photo-diode array-electrospray ionization-quadrupole-time-of-flight-mass spectrometry-lipoxygenase-fluorescence detector (UPLC-PDA-ESI-Q-TOF-MS-LOX-FLD) online system was developed for the identification and evaluation of anti-inflammatory active ingredients in Polygala tenuifolia Willd. Using this system, the UPLC fingerprints, mass fragments and LOX-binding peak profiles in the samples were rapidly and simultaneously obtained. A total of 101 compounds were isolated and identified and 38 compounds (11 oligosaccharide esters, nine xanthones, 17 saponins, and one glycosyloxyflavone) showed strong LOX-binding activity. Six compounds were selected to study their LOX-binding ability, and the results indicated that the content of the six compounds had a good linear relationship with the LOX-binding ability, and it was found that the substitution position, the type of substituent and the number of glycosyl groups all had a certain influence on the LOX-binding ability of the compounds. The LOX-binding activities of 10 compounds were verified by the surface plasmon resonance (SPR) technique and the activity results were consistent with the online system. After validation, we identified 7 active compounds that combined with LOX to exert anti-inflammatory effects for the first time. All the results fully demonstrate the efficiency, stability and reliability of the online system and this work provides an exemplary and useful method for the rapid screening of potential anti-inflammatory active compounds in P. tenuifolia and other traditional Chinese medicines. At the same time, it provides a new direction for screening small molecule inhibitors of enzymes like LOX.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have