Abstract

NeXT (New X-ray Telescope) is the next Japanese X-ray astronomical satellite mission after the Suzaku satellite. NeXT aims to perform wide band imaging spectroscopy. Due to the successful development of a multilayer coated mirror, called a supermirror, NeXT can focus X-rays in the energy range from 0.1 up to 80 keV. To cover this wide energy range, we are in the process of developing a hybrid X-ray camera, Wideband X-ray Imager (WXI) as a focal plane detector of the supermirror. The WXI consists of X-ray CCDs (SXI) and CdTe pixelized detectors (HXI), which cover the lower and higher X-ray energy bands of 0.1–80 keV, respectively. The X-ray CCDs of the SXI are stacked above the CdTe pixelized detectors of the HXI. The X-ray CCDs of the SXI detect soft X-rays below ∼ 10 keV and allow hard X-rays pass into the CdTe detectors of the HXI without loss. Thus, we have been developing a “back-supportless CCD” with a thick depletion layer, a thinned silicon wafer, and a back-supportless structure. In this paper, we report the development and performances of an evaluation model of CCD for the SXI, “CCD-NeXT1”. We successfully fabricated two types of CCD-NeXT1, unthinned CCDs with 625- μ m thick wafer and 150- μ m thick thinned CCDs. By omitting the polishing process when making the thinned CCDs, we confirmed that the polishing process does not impact the X-ray performance. In addition, we did not find significant differences in the X-ray performance between the two types of CCDs. The energy resolution and readout noise are ∼ 140 eV (FWHM) at 5.9 keV and ∼ 5 electrons (RMS), respectively. The estimated thickness of the depletion layer is ∼ 80 μ m . The performances almost satisfy the requirements of the baseline plan of the SXI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.