Abstract

Although contactless ultrasonic wavefield imaging shows potential for effective nondestructive inspection of various engineering materials, it has been rarely applied to concrete materials owing to technical challenges including low signal-to-noise ratio (SNR) caused by inherent heterogeneity of concrete. This paper presents development of a multi-channel MEMS ultrasonic microphone array system and its application to compressed wavefield imaging of concrete materials. The developed multi-channel MEMS ultrasonic microphone array system contains eight MEMS ultrasonic microphone elements and a signal conditioning circuit that enables measurements of ultrasonic signals with high SNR. A compressed sensing approach, based on the multiple measurement vector (MMV) concept, is applied to reconstruct a full dense ultrasonic wavefield data from sparsely sampled ultrasonic wavefield data. Experiments are carried out on a laboratory concrete sample to verify the performance of the developed MEMS microphone array system and proposed compressed sensing approach and then large-scale concrete samples to demonstrate practical application. The experimental results demonstrate that the developed MEMS microphone array system provides high-quality (SNR > 20 dB) ultrasonic data collected from concrete elements; furthermore, the proposed compressed sensing approach provides accurate reconstruction of dense wavefield data, as determined by peak signal-to-noise ratio (PSNR), from sparsely measured wavefield data with compression ratios up to 85% and PSNR above 25 dB in data collected form realistic large-scale concrete samples. By combining the MEMS array system and compressed sensing approach, the total ultrasonic data acquisition time needed to produce dense wavefield data can be significantly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.