Abstract

Most of the current artificial disc prosthesis presented a restricted range of motion. Here we propose the design of a novel intervertebral disc composed of carbon fiber, hyaluronic methylcellulose hydrogel loaded with mesenchymal stem cells and polycaprolactone. The prosthesis was biomechanically evaluated under two static physiological conditions to study the mechanical influence of the material on the device. The results obtained in the simulations showed a not only a congruent behavior with preclinical condition, but also that the proposed materials met the desired biomechanical properties Clinical Relevance- Cervical spondylosis is a degenerative disease of the human spine that causes wear and tear of the cervical intervertebral discs. Nowadays, the proposed surgical solutions do not allow fully recovery of normal movement because the surgical intervention do not emulate the natural range of motion, may lack shock absorption mechanisms, show signs of fatigue over time affecting its durability, and do not have good bone adhesion. Therefore, hypermobility and problems of heterotopic ossification may restrict the range of motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.