Abstract

Purpose This paper aims to propose an integrated bionic optimal design system to assist engineers in bionic design tasks. In this age of ecological awareness and sustainability, engineers are increasingly applying bionics to their product designs. A recent surge of research on bionics has presented new opportunities and challenges. To deal with these challenges, an integrated design system equipped with the capabilities of conducting biologically inspired design, solving technical contradictions, optimizing design parameters and verifying design effectiveness is required. Design/methodology/approach This study proposes a two-level analysis to help decision makers conduct multi-faceted observation and assessment on conceptual bionic design. The contradictions incurred when transferring biological principals to engineering design are solved using BioTRIZ, and the conceptual design is then created. This study conducts computer-aided engineering analysis, incorporating the Taguchi method and TOPSIS method, to obtain the optimal design of bionic products. Findings The proposed design process focuses on improving the product structure instead of changing the materials, and thus, the authors are able to put the goals of saving energy, environmental protection and sustainability into practice. Practical implications Through the design and analysis processes, the authors prove that their designed bionic-fan can effectively enhance operational efficiency and reduce the aerodynamic noise. The system can provide a practical tool for engineers intending to accomplish complete designs and verifications using bionics. Originality/value Most existing design methodologies that have attempted to combine biology with engineering design have fallen short in their level of thoroughness. This study proposes a complete bionic design system by integrating the processes of bionic-inspired design, optimization and verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.