Abstract
An in situ hybridization (RNA-ISH) assay has been developed and optimized to detect viral haemorrhagic septicemia virus (VHSV), an OIE listed piscine rhabdovirus, in infected fish cells using fathead minnow (FHM) as a model cell line. Two antisense riboprobes (RNA probes) targeting viral transcripts from a fragment of nucleoprotein (N) and glycoprotein (G) genes were generated by reverse transcription polymerase chain reaction (RT-PCR) using VHSV specific primers followed by a transcription reaction in the presence of digoxigenin dUTP. The synthesized RNA probes were able to detect viral mRNAs in formalin fixed VHSV infected FHM cells at different time points post inoculation (pi). To correlate the signal intensity, a time dependent quantitation of the viral mRNA transcript and infectivity titer was done by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and 50% tissue culture infectivity dose (TCID50), respectively, from the infected cells and culture supernatants. Further, we compared the diagnostic sensitivity of ISH assay with immunocytochemistry (ICC). Both the riboprobes used in the ISH assay detected VHSV as early as 6 hpi in the FHM cells inoculated with a multiplicity of infection (moi) of 2. Also, the signal detection in ISH was at an early stage in comparison to ICC, wherein, signal was first detected at 12 hpi. Our results clearly highlight that current ISH assay can be of value as a diagnostic tool to localize and detect VHSV in conjunction with conventional virus isolation in cell culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.