Abstract

Chlamydia abortus, like other members of the family Chlamydiaceae, have a unique intracellular developmental cycle that is characterized by its chronic nature. Infection of a flock can remain undetected for months, until abortion occurs the following reproductive season but, to date, neither the location nor the mechanisms that maintain this latent phase are fully understood. Studies have shown that IL-10 produced as a response to certain micro-organisms sustains the intracellular survival of pathogens and increases host susceptibility to chlamydial infections.In order to induce a sustained infection C. abortus, transgenic mice that constitutively express IL-10 were infected and the immunological mechanisms that maintain infection in these mice were compared with the mechanisms of a resistant wild-type mouse strain. Viable bacteria could be detected in different tissues of transgenic mice up to 28 days after infection, as analysed by bacterial isolation and immunohistochemistry. Chronic infection in these mice was associated with an impaired recruitment of macrophages, decreased iNOS activity at the site of infection and a more diffuse distribution of inflammatory cells in the liver. This murine model can be of great help for understanding the immunological and bacterial mechanisms that lead to chronic chlamydial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.