Abstract

We investigated standard specimens for accurately calibrating the line-focus-beam ultrasonic material characterization (LFB-UMC) system without system dependencies. We evaluated several types of lithium tantalate (LiTaO3) substrates using two LFB-UMC systems with different device/system characteristics to measure and calibrate the propagation characteristics of the leaky surface acoustic waves (LSAWs), and analyzed the variations between the calibrated results. We concluded from this analysis that, by selecting materials with the cut surfaces and propagation directions of standard specimens that are identical to the objects to be calibrated, calibration errors resulting from different performance characteristics between the two systems could be nearly eliminated. Also, analytical errors caused by the effects of spectra with two close peaks (another propagation wave mode), one of the most common problems of characterization in the past, could be eliminated at the same time by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.