Abstract

Protective clothing standards, such as test methods published by ASTM International, play an integral role in ensuring the performance of personal protective equipment. The standard tests are not without limitations and are periodically reviewed and often updated. Some tests may not be reflective of in-use conditions. A new test cell was designed using sanitary fixtures to evaluate the effect of glove stretch on barrier performance using fluorescein solution as the challenge agent for enhanced visualization and fluorometer detection. Domed-shaped and flat screens were developed to permit and limit glove stretch within the test cell. The barrier performance of glove swatches was evaluated for both stretched and unstretched states. Latex, nitrile, and vinyl glove models of various thicknesses were evaluated. The tests were conducted following pressure and time parameters specified in ASTM F903, ASTM F1670, and ASTM F1671. Fluorescein solution movement, which may occur through penetration, was measured using a fluorometer. Glove stretch caused a reduction in glove thickness ranging from 16% to 40%. Overall, 21 sample failures were found (16.7%; n = 126) regardless of test condition. Nitrile gloves provided better barrier efficacy with the lowest failure rates (2.38%; 1 failure out of 42) compared to latex (19.4%; 7 failures out of 36) and vinyl gloves (27.1%; 13 failures out of 48). Differences in failure rates between stretched and unstretched gloves were insignificant; however, the latex material showed a 2.5 times increase in failures when stretched compared to unstretched. The new test apparatus was able to differentiate between the barrier performance of different glove materials. The use of a domed screen allowed the gloves to stretch, a condition that better represents the state of gloves when in use. Analysis of samples collected from the glove surface opposite to the exposure may provide a way to assess chemical permeation in addition to penetration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.