Abstract

This paper is based on the experimental study for design and control of vibrations in automotive vehicles. The objective of this paper is to develop a model for the highly nonlinear magnetorheological (MR) damper to maximize passenger comfort in an automotive vehicle. The behavior of the MR damper is studied under different loading conditions and current values in the system. The input and output parameters of the system are used as a training data to develop a suitable model using Artificial Neural Networks. To generate the training data, a test rig similar to a quarter car model was fabricated to load the MR damper with a mechanical shaker to excite it externally. With the help of the test rig the input and output parameter data points are acquired by measuring the acceleration and force of the system at different points with the help of an impedance head and accelerometers. The model is validated by measuring the error for the testing and validation data points. The output of the model is the optimum current that is supplied to the MR damper, using a controller, to increase the passenger comfort by minimizing the amplitude of vibrations transmitted to the passenger. Besides using this model for cars, bikes, and other automotive vehicles it can also be modified by retraining the algorithm and used for civil structures to make them earthquake resistant.

Highlights

  • Isolation of the forces transmitted by external application is the most important function of a suspension system

  • The suspension system comprises a spring element and a dissipative element, which when placed between the object to be protected and the excitation reduces the vibration transmitted to the object

  • The damping of a passive suspension system is a property of the system and cannot be varied, whereas in an active suspension system the damping of the system can be altered by using an actuator to give it an external force

Read more

Summary

Introduction

Isolation of the forces transmitted by external application is the most important function of a suspension system. The damping of a passive suspension system is a property of the system and cannot be varied, whereas in an active suspension system the damping of the system can be altered by using an actuator to give it an external force. This external force helps in improving the ride quality. A variation of the active suspension system is the semiactive or the adaptive suspension system In these systems the damping of the system is varied by controlling the current thereby changing the viscous properties of the damping elements in the suspension system. In comparison to active suspension semiactive suspension systems’ power consumption is considerably less

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.