Abstract

We investigated the removal of polymers with various chemical structures and the removal of ion-implanted resists using wet ozone. The removal rates of polymers that have carbon-carbon (C–C) double bonds in the main chain were high. The main chain of these polymers may be decomposed. The removal rates of polymers that have C–C double bonds in the side chain were low. The benzene ring in the side chain changes into carboxylic acid, so their ability to dissolve in water increased. The polymers without C–C double bonds were not removed. Removal of B and P ion-implanted resists became difficult with increasing acceleration energy of ions at implantation. The resist with plastic-deformation hardness that was twice as hard as that of nonimplanted resist should be removed similarly to nonimplanted resist. Using TOF-SIMS, we clarified that the molecule of cresol novolak resin was destroyed and carbonized by ion implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.