Abstract
Cemented paste backfill (CPB) is an eco‐friendly composite containing mine waste or tailings and has been widely used as construction materials in underground stopes. In the field, the uniaxial compressive strength (UCS) of CPB is critical as it is closely related to the stability of stopes. Predicting the UCS of CPB using traditional mathematical models is far from being satisfactory due to the highly nonlinear relationships between the UCS and a large number of influencing variables. To solve this problem, this study uses a support vector machine (SVM) to predict the UCS of CPB. The hyperparameters of the SVM model are tuned using the beetle antennae search (BAS) algorithm; then, the model is called BSVM. The BSVM is then trained on a dataset collected from the experimental results. To explain the importance of each input variable on the UCS of CPB, the variable importance is obtained using a sensitivity study with the BSVM as the objective function. The results show that the proposed BSVM has high prediction accuracy on the test set with a high correlation coefficient (0.97) and low root‐mean‐square error (0.27 MPa). The proposed model can guide the design of CPB during mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.