Abstract
A novel electrochemical membrane bioreactor (EMB) integrating succinic acid (SA) production and in situ separation in the anode compartment through an anion exchange membrane was employed in fed-batch fermentations with Y. lipolytica PSA02004 using hydrolysates from the organic fraction of municipal solid waste (OFMSW) as feedstock. The initiation of electrolysis cell operation and the reduction of pH from 6 to 5.5 at 30 h in a 6.7 L bioreactor improved the SA production efficiency, resulting in 66.7 gSA/L, 0.51 g/g yield, 0.78 g/(L·h) productivity, high coulombic efficiency (66.2%) and relatively low electricity consumption for SA separation (2.6 kWh/kgSA). The recirculation of the fermentation broth in the cathode compartment and the OH– produced by water reduction reduced NaOH consumption (35.4%) for pH control during fermentation. The fermentation was efficiently replicated in a 30 L bioreactor with a low membrane surface area (100 cm2) electrolysis cell, but it failed with a higher membrane surface area (702 cm2) electrolysis cell indicating that yeast cell viability, cell design and EMB configuration are important aspects for process scale-up. SA crystals were purified, at 99.95% purity and 95% yield, from the anolyte solution via activated carbon treatment, evaporation, crystallization and drying. Cell removal via centrifugation and acidification stages were not required as in conventional SA purification processes. The produced SA crystals were suitable for the production of polyester polyols for polyurethane urea dispersions applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have